Home
Class 14
MATHS
int(0)^( pi)(x sin^(0)x)/(1+cos^(2)x)dx...

int_(0)^( pi)(x sin^(0)x)/(1+cos^(2)x)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : int_(0)^(pi) (x sin x)/(1+cos^(2)x) dx =(pi^(2))/(4)

Prove that : int_(0)^(pi) (x sin x)/(1+cos^(2)x) dx =(pi^(2))/(4)

int_(0)^( pi)(sin x)/(1+cos^(2)x)dx =

If A = int_(0)^((pi)/(2))(sin^(3)x)/(1+cos^(2)s)dx and B=int_(0)^((pi)/(2))(cos^(2)x)/(1+sin^(2)x)dx , then (2A)/(B) is equal to

If A = int_(0)^((pi)/(2))(sin^(3)x)/(1+cos^(2)s)dx and B=int_(0)^((pi)/(2))(cos^(2)x)/(1+sin^(2)x)dx , then (2A)/(B) is equal to

If int_(0)^(pi//2) sin^(4) x cos^(2)x dx = (pi)/(32) then int_(0)^(pi//2) cos^(4) x sin^(2) x dx=

int_(0)^( pi/2)sin^(2)x cos x dx

If int_(0)^(pi//2)sin^(4)x cos^(2)x dx=(pi)/(32) , then int_(0)^(pi//2)sin^(2)x cos^(4)x dx=