Home
Class 14
MATHS
tan^(-1)[(sqrt(1+x^(2))-1)/(x)]=(1)/(2)t...

tan^(-1)[(sqrt(1+x^(2))-1)/(x)]=(1)/(2)tan^(-1)x

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(x+sqrt(1+x^(2)))=

tan[2Tan^(-1)((sqrt(1+x^(2))-1)/x)]=

tan[(sqrt(1+x^(2))-1)/x] =

Prove that tan^(-1)backslash(sqrt(1+x^(2))-1)/(x)=(1)/(2)tan^(-1)x

The derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x)) writ.tan^(-1)x is

Derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x))w.r.t.tan^(-1)x is

Differentiate tan^(-1)((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1)x.

s=tan^(-1)((sqrt(1+x^(2))-1)/(x)) and T=tan^(-1)x then (ds)/(dT)

If y=tan^(-1)((sqrt(1+x^(2))-1)/(x)) and z=tan^(-1)((2x)/(1-x^(2))) , then (dy)/(dz) is equal to -

Differentiate tan^(-1) ((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1) ((x)/(sqrt(1-x^(2)))) .