Home
Class 12
MATHS
The value of lim(x rarr - oo) ( x^4 sin(...

The value of `lim_(x rarr - oo) ( x^4 sin(1/x) + x^2)/(1 + |x^3|) `

Text Solution

Verified by Experts

`lim_(x->-oo)(x^4*sin(1/x)+x^2)/(1+|x^3|)`
`lim_(x->-oo)(x^4*1/x+x^2)/(1+|x^3|)`
`lim_(x->-oo)(x^3+x^2)/(1+|x^3|)`
`lim_(x->-oo)(x^3(1+1/x))/(-x^3(1-1/x^3))`
`x^3/-x^3`
`=-1`.
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr oo) {(x^4sin((1)/(x))+x^2)/(1+|x^3|)} is

The value of lim_(x rarr oo) {(x^(2)sin ((1)/(x))-x)/(1-|x|)} is :

1.The value of lim_(x rarr oo)(x^(5))/(5^(x)) is

The value of lim_(x rarr oo)[((x+1)^(2)-1)/(x)] is

The value of lim_(x rarr oo)[((x+1)^(2)-1)/(x)] is

lim_(x rarr oo)x sin(1/x)=

The value of lim_(x rarr oo)3^(x)sin((4)/(3^(x))) is

The value of lim_(x rarr oo)(x^(4))/(e^(x^(2))) is

lim_ (x rarr oo) (x ^ (2) sin ((1) / (x)) - x) / (1- | x |)

lim_(x rarr oo) sin x /x =1