Home
Class 12
MATHS
The value of lim(x rarr pi/4) sqrt(1 - s...

The value of `lim_(x rarr pi/4) sqrt(1 - sqrt(sin 2x))/(pi - 4x) is`

Text Solution

Verified by Experts

`lim_(x->pi/4)sqrt(1-sqrt(sin2x))/(pi-4x)`
multiplying and dividing by `sqrt(1+sqrt(sin2x))`
`lim_(x->pi/4)(1^2-sin2x)^(1/2)/(pi-4x(sqrt(1+sqrt(sin2x))`
`lim_(h->0)(1-sin(2(pi/4+h))^(1/2))/((pi-4(pi/4+h))(sqrt1+sqrtsin^2(pi/4+h))`
`lim_(h->0)(1-1+2sin^2h)^(1/2)/(4hsqrt2)`
`lim_(h->0)(2^(1/2)sinh)/(4sqrt2h)`
`1/4`.
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr(pi)/(4)) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

The value of lim_(x->pi/4) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

The value of lim_(x->pi/4) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

The value of lim_(x->pi/4) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

The value of lim_(x->pi/4) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

lim_(x rarr pi/4)(sqrt(cos x)-sqrt(sin x))/(x-(pi)/(4))

lim_(x rarr pi)(sqrt(1-cos x)-sqrt(2))/(sin^(2)x)

The value of lim_(x rarr0)(sqrt(4+x)-sqrt(4-x))/(sin^(-1)2x)=

lim_(x rarr(pi)/(2))(sqrt(2)-sqrt(1+sin x))/(cos^(2)x)

Find the value of lim_(x rarr0)(sqrt(2)-sqrt(1+cos x))/(sin^(2)x)