Home
Class 12
MATHS
Let f''(x) gt 0 AA x in R and let g(x)...

Let `f''(x) gt 0 AA x in R and ` let `g(x)=f(x)+f(2-x)` then interval of x for which g(x) is increasing is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f''(x) gt 0 AA x in R and g(x)=f(2-x)+f(4+x). Then g(x) is increasing in

Let f'(sinx)lt0andf''(sinx)gt0,AAx in (0,(pi)/(2)) and g(x)=f(sinx)+f(cosx), then find the interval in which g(x) is increasing and decreasing.

Let f'(sinx)lt0andf''(sinx)gt0,AAx in (0,(pi)/(2)) and g(x)=f(sinx)+f(cosx), then find the interval in which g(x) is increasing and decreasing.

Let f'(sinx)lt0andf''(sinx)gt0,AAx in (0,(pi)/(2)) and g(x)=f(sinx)+f(cosx), then find the interval in which g(x) is increasing and decreasing.

Let f'(sin x) 0AA x in(0,(pi)/(2)) and g(x)=f(sin x)+f(cos x), then

Let g(x) = 2 f(x/2)+ f(2-x) and f''(x) lt 0 forall x in (0,2) . Then calculate the interval in which g(x) is increasing.

Let g(x) = 2 f(x/2)+ f(2-x) and f''(x) lt 0 forall x in (0,2) . Then calculate the interval in which g(x) is increasing.

If f(x) is a quadratic expression such that f(x)gt 0 AA x in R , and if g(x)=f(x)+f'(x)+f''(x) , then prove that g(x)gt 0 AA x in R .

If f(x) is a quadratic expression such that f(x)gt 0 AA x in R , and if g(x)=f(x)+f'(x)+f''(x) , then prove that g(x)gt 0 AA x in R .