Home
Class 12
MATHS
The value of lim(x rarr pi/3) ( tan^3 x ...

The value of `lim_(x rarr pi/3) ( tan^3 x - 3 tan x)/( cos(x + pi/6)) is :`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr pi/4)(tan^(3)x-tan x)/(cos(x+(pi)/(4))) is 8 b.4 c.-8d .-2

The value of lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

The value of lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

The value of lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

Evaluate lim_(x rarr pi/3)(sqrt3 - tan x)/(pi - 3x)

lim_(x rarr pi)sgn[tan x]

lim_ (x rarr (pi) / (4)) (tan ^ (3) x-tan x) / (cos (x + (pi) / (4)))

lim_ (x rarr (pi) / (2)) (tan x) / (tan5x)

lim_ (x rarr (pi) / (4)) (tan x) ^ (tan2x)

If alpha = lim_(x rarr pi//4)""(tan^(3)x - tan x)/(cos (x + (pi)/(4))) and beta = lim_(x rarr 0)(cos x)^(cot x) are the roots of the equation, a x^(2) + bx -4 = 0 , then the ordered pair (a, b) is :