Home
Class 12
MATHS
The value of lim(x rarr 2) ( 3^x + 3^(3-...

The value of `lim_(x rarr 2) ( 3^x + 3^(3-x) - 12)/(3^(3-x)- 3^(x/2)) is :`

Text Solution

Verified by Experts

`lim_(h->0)(3^(2+h)+3^(3-2+h)-12)/(3^(3-2+h)-3^(2+h/2))`
`(9(1+hln3)+3(1-hln3)-12)/(3(1-hln3)-3(1+h/2ln3))`
`(9+9hlm3+3-3hln3-12)/(3-3hln3-3-3/2hln3`
`(6hln3)/(-9/2hln3)`
`-12/9`
`-4/3`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following limit : lim_(x rarr 2)(3^x+3^(3-x) - 12)/(3^(3-x)- 3^(x/2)) .

Evaluate lim_(x rarr 2) (3^(x)+3^(3 - x)-12)/(3^((-x)/(2))-3^(1-x))

Evaluate : lim_(x rarr 0) (3^x+3^(-x)-2)/x^2 .

7.The value of lim_(x rarr2)(3^(x/2)-3)/(3^(x)-9) is

lim_(x rarr 0) (3^(x)-2^(x))/x=

lim_(x rarr2)(x^(3)+x^(2)-12)/(x^(3)-x^(2)-x-2)

lim_(x rarr 3) (2x^3-3x^2-x-1)

Evaluate the following limits : lim_(x to 2)(3^(x)+3^(3-x)-12)/(3^(3-x)-3^(x/2)) .

Evaluate lim_(x to 2) (3^(x)+3^(x-1)-12)/(3^((-x)/(2))-3^(1-x))

lim_(x rarr0)(2x+3)=3