Home
Class 12
MATHS
" (T) "tan^(-1)(1)/(a-1)=tan^(-1)(1)/(x)...

" (T) "tan^(-1)(1)/(a-1)=tan^(-1)(1)/(x)+tan^(-1)(1)/(a^(2)-x+1)" and "(1)/(8x)" anfroment "

Promotional Banner

Similar Questions

Explore conceptually related problems

(tan^(-1)x)/(1+tan^(-1)x)" w.r.t."tan^(-1)x

If Tan^(-1)(1//(a-1))=Tan^(-1)(1//x)+Tan^(-1)[1//(a^(2)-x+1)] , then x =

If tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/(x))=tan^(-1)(-7), then x is

If tan^(-1)(3)+tan^(-1)(x)=tan^(-1)(8) then x=

Solve: tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)= tan^(-1)3x.

Solve tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)""(8)/(31)

Solve: tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)(8/31) .

If tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/x)=pi+tan^(-1)(-7), then x=

If tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/(x))=tan^(-1)(-7)+pi then x =

Solve tan^(-1) ((x+1)/(x-1)) + tan^(-1) ((x-1)/x) = tan^(-1)(-7)