Home
Class 12
MATHS
" The value of "lim(x rarr0)log(tan^(2)x...

" The value of "lim_(x rarr0)log_(tan^(2)x)(tan^(2)2x)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : lim_(x rarr0)(log)_(tan^(2)x)(tan^(2)2x)

lim_(x rarr0)(tan x^(3))/(x)

lim_(x rarr0)(tan x^(@))/(x)

The value of lim_(x rarr0)[ln(1+sin^(2)x)cot ln^(2)(1+x)] is :

lim_(x rarr0)(log tan2x)/(log tan x)

The value of lim_(x rarr0)(tan[e^(2)]x^(2)-tan[-e^(2)]x^(2))/(sin^(2)x)

lim_(x rarr0)(tan x)/(x)

lim_(x rarr0)(tan x)/(x)

lim_(x rarr0)((x^(2)e^(x))/(tan^(2)x))=?

lim_(x rarr0)(tan x)/(sin^(2)x)