Home
Class 11
MATHS
" (111) "C(1)^(2)+2C(2)^(2)+3C(3)^(2)+.....

" (111) "C_(1)^(2)+2C_(2)^(2)+3C_(3)^(2)+...+nC_(n)^(2)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) , prove that C_(1)^(2) + 2C_(2)^(2) + 3C_(3)^(2) + ..+ nC_(n)^(2) = ((2n-1)!)/(((n-1)!)^(2))

Given that C_(1)+2C_(2)x+3C_(3)x^(2)+...+2nC_(2n)x^(2n-1)=2n(1+x)^(2n-1),whereC_(r)=(2n)!/[r!(2n-r)!];r=0,1,2 then prove that C_(1)^(2)-2C_(2)^(2)+3C_(3)^(2)-...-2nC_(2n)^(2)=(-1)^(n)nC_(n).

c_(1)^(2)+2C_(2)^(2)+3C_(3)^(2)+....+nC_(n)^(2)=((2n-1)!)/ ([(n-1)!^(2)))

If (1+x)^n=underset(r=0)overset(n)C_(r)x^r then prove that C_(1)^2+2.C_(2)^(2)+3.C_(3)^2 +…….+n.C_(n)^(2)=((2n-1)!/((n-1)!)^2

If (1+x)^n=underset(r=0)overset(n)C_(r)x^r then prove that C_(1)^2+2.C_(2)^(2)+3.C_(3)^2 +…….+n.C_(n)^(2)=((2n-1)!/((n-1)!)^2

If C_(r) stands for nC_(r), then the sum of the series (2((n)/(2))!((n)/(2))!)/(n!)[C_(0)^(2)-2C_(1)^(2)+3C_(2)^(2)-......+(-1)^(n)(n+1)C_(n)^(2)], where n is an even positive integer,is

Prove that ^nC_(0)^(2n)C_(n)-^(n)C_(1)^(2n-1)C_(n)+^(n)C_(2)xx^(2n-2)C_(n)++(-1)^(n)sim nC_(n)^(n)C_(n)=1

Prove that ^nC_(0)^(n)C_(0)-^(n+1)C_(1)^(n)C_(1)+^(n+2)C_(2)^(n)C_(2)-...=(-1)^(n)

Prove that: C_(1) + 2C_(2) + 3C_(3) + 4C_(4) +….. + nC_(n) = n.2^(n-1)