Home
Class 12
MATHS
L=lim(x->0) (3 lambda x+(lambda-2) sinx)...

`L=lim_(x->0) (3 lambda x+(lambda-2) sinx)/(sin^(-1)x)^3` If L is the finite, then which of the following is/are true- A)`lambda =1/2` B) `L=1/4` C) `L=-1/4` D)` lambda=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Let L= lim_(x->0) (a-(a^3-x^3)^(1//3) - x^3/108)/(x^6); a>0 If L is finite, then L is

Consider lim_(x->0)(a x+b e^(-x)+sinx+1)/(a x-bsinx)=l (l is finite) then

If |x-1|+3|x-2|-5|x-4|=lambda,lambda in R then which of the following is not true? (a) for lambda=9 equation has one solution

If L=lim_(xto0) (sinx+ae^(x)+be^(-x)+clog_(e)(1+x))/(x^(3)) exists finitely, then The value of L is

If L=lim_(xto0) (sinx+ae^(x)+be^(-x)+clog_(e)(1+x))/(x^(3)) exists finitely, then The value of L is

If L=lim_(xto0) (sinx+ae^(x)+be^(-x)+clog_(e)(1+x))/(x^(3)) exists finitely, then The value of L is

Let L= Lim_(x rarr-2)(3x^(2)+ax+a+1)/(x^(2)+x-2) .If L is finite,then a) L= 4/3 b) L=13 c) L=-2 d) L= -1/3

lim_(lambda rarr0)(int_(0)^(1)(1+x)^(lambda)dx)^((1)/(lambda)) is equal to