Home
Class 11
MATHS
[" 1.Frafferent "(7)/(9)" 417"(2 pi)/(3)...

[" 1.Frafferent "(7)/(9)" 417"(2 pi)/(3)" anfrom "-],[[" (i) "sin^(-1)(sin(2 pi)/(3)),]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (I ) sin^(-1) ( sin ((2pi )/(3)) ) (ii ) sin^(-1) (sin ((5 pi )/(4)))

sin ((pi) / (7)) sin ((2 pi) / (7)) sin ((3 pi) / (7))

Prove that (i) " tan"^(2) .(pi)/(3) + 2cos^(2) .(pi)/(4)+ 3 sec^(2).(pi)/(6)+ 4 cos^(2).(pi)/(2)=8 (ii) " sin ".(pi)/(6) " cos 0 + sin ".(pi)/(4) " cos " .(pi)(4) + " sin " .(pi)/(3) "cos " .(pi)/(6) =(7)/(4) (iii) " 4sin " (pi)/(6) " sin"^(2) (pi)/(3) + 3 " cos " .(pi)/(3) " tan ".(pi)/(4) = " cosec"^(2).(pi)/(2)=4

Prove that (i) "sin " (7pi)/(12) " cos " (pi)/(2) - "cos " *(7pi)/(12) " sin " (pi)/(4) = (sqrt(3))/(2) (ii) " sin " (pi)/(4) " cos " (pi)/(2) + "cos"(pi)/(4) " sin " (pi)/(12) = (sqrt(3))/(2) (iii) " cos " (2pi)/(3) " cos " (pi)/(4) - " sin " (2pi)/(3) " sin " (pi)/(4) =(-(sqrt(3) +1))/(2sqrt(2))

Prove that sin ""(pi)/(9) sin ""(2pi)/(9) sin ""( 3pi)/(9) sin ""(4pi)/(9) = (3)/(16).

Show that : "sin" 2(pi)/(7)+ "sin"(4pi)/(7)-"sin" (6pi)/(7) =4 "sin" (pi)/(7) "sin" (2pi)/(7) "sin" (3pi)/(7)

sin ^(2) (pi)/(18)+sin ^(2) (pi)/(9)+sin ^(2) (7 pi)/(18)+sin ^(2) (4 pi)/(9)=

Show that sin^(2)""(pi)/(18) + sin^(2)""(pi)/(9) + sin^(2)""(7pi)/(18) + sin^(2)"" (4pi)/(9) = 2 .

sin "" (pi)/(14) .sin "" (3pi)/(14).sin"" (5pi)/(14).sin""(7pi)/(14).sin"" (9pi)/(14).sin""(11pi)/(14).sin""(13pi)/(14)=

If z_(1) = sqrt(2)(cos""(pi)/(4) + "" i sin""(pi)/(4)) and z_(2) = sqrt(3)(cos""(pi)/(3) + i sin""(pi)/(3)) , then |z_(1)z_(2)| is