Home
Class 12
MATHS
lim(x->0)(e^x^2-3^(3x))/(sin((x^2)/2)-si...

`lim_(x->0)(e^x^2-3^(3x))/(sin((x^2)/2)-sinx)=lnK(w h e r ek in N)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following limit: (lim)_(x->0)(e ^(x^2)-3^(3x))/(sin((x^2)/2)-sinx)

lim_(x->0)(e^(2x)-1)/(3x)

lim_(x rarr0)(3^(5x)-e^(2x))/(sin3x)

lim_(x->0) (2e^sinx-e^(-sinx)-1)/(x^2+2x)

lim_(x to 0) (e^x-e^sinx)/(x-sinx)

lim_(x rarr0)(e^(x)-e^(sin x))/(2(x-sin x))=

lim_(x rarr0)(e^(x)-e^(sin x))/(2(x-sin x))=

lim_(x to 0) (e^(x^2) - 1)/sin^2x

lim_(x to 0)(e^(2x)-1)/(sin 3x) = ?