Home
Class 11
MATHS
" prove that "sin(A+B)*sin(A-B)=...

" prove that "sin(A+B)*sin(A-B)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If2tan A=3tan B, then prove that sin(A+B)=5sin(A-B)

In any Delta ABC, prove that (sin B)/(sin(B+C))=(b)/(a)

For any triangle ABC, prove that sin(B-C)/sin(B+C)=(b^2-c^2)/(a^2)

19.Prove that sin (A + B) sin (AB) + sin (B + C) sin (BC) + sin (C + A) sin (CA) = 0

In a triangleABC, " prove that "(sin B)/(sin C)=(c-a cos B)/(b-a cos C)

If tan(A+B)=3 tan A , prove that sin(2A+B)=2sin B

In any DeltaABC , prove that (sin B)/(sin(B+C) ) = b/a

In any /_\ABC ,prove that sin(B-C)/(sin(B+C))=(b^2-c^2)/(a^2)

In Delta ABC prove that sin(B-C)//sin(B+C) = (bcosC - c cosB)//(bcosC + c cosB)

In triangle ABC, prove that sin(B+C-A)+sin(C+A-B)+sin(A+B-C)=4sin A sin B sin C .