Home
Class 10
MATHS
[quad sin theta+sin^(2)theta=1],[cos^(12...

[quad sin theta+sin^(2)theta=1],[cos^(12)theta+3cos^(10)theta+3cos^(2)theta+2cos^(4)theta+2cos^(2)theta-2]

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin theta+sin^(2)theta=1 find the value of cos^(12)theta+3cos^(10)theta+3cos^(8)theta+cos^(6)theta+2cos^(4)theta+2cos^(2)theta-2

If sin theta + sin^(2) theta =1 then cos^(4) theta + cos^(8) theta + 2 cos^(6) theta =

If sin theta+sin ^(2) theta=1 then cos ^(12) theta+3 cos ^(10) theta+3 cos ^(8) theta+cos ^(6) theta=

If sin theta+sin ^(2) theta+sin ^(3) theta=1 then cos ^(6) theta-4 cos ^(4) theta+8 cos ^(2) theta=

If sintheta+sin^2theta=1, then prove that cos^(12)theta+3cos^10theta+3cos^8theta+cos^6theta+2cos^4theta+2cos^2theta-2=1

If sintheta+sin^2theta=1 ,find the value of cos^(12)theta+3cos^(10)theta+3cos^8theta+cos^6theta+2cos^4theta+2cos^2theta-2

Prove the following identities: 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1=0sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1(sin^(8)theta-cos^(8)theta)=(sin^(2)theta-cos^(2)theta)(1-2sin^(2)theta cos^(2)theta)

2cos theta-cos3 theta-cos5 theta-16cos^(3)theta sin^(2)theta=