Home
Class 10
MATHS
" Q:6"[" Find "x" in terms of "a,b" and ...

" Q:6"[" Find "x" in terms of "a,b" and "c:,],[(a)/(x-a)+(b)/(x-b),=(2c)/(x-c),x!=a,b,c]

Promotional Banner

Similar Questions

Explore conceptually related problems

Find x in terms of a,b and c(a)/(x-a)+(b)/(x-b)+(c)/(x-c)=2(c)/(x-c)x!=a,x!=b,x!=c

Find x in terms of a , b and c : (a)/(x - a) + (b)/(x - b) = (2 c)/(x - c) , x - a , b , c

(_x^( If )-b-c)/(a)+(x-c-a)/(b)+(x-a-c)/(c)=3

Find x if [[a,b,c],[b,a,c],[x,b,c]] =0

(x^a/x^b)^(a+b).(x^b/x^c)^(b+c).(x^c/x^a)^(c+a)

If |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))| = (a - b) (b - c) (c - a) (a + b + c) , where a,b,c are all different, then the determinant |(1,1,1),((x-a)^(2),(x-b)^(2),(x-c)^(2)),((x-b)(x-c),(x-c)(x-a),(x-a)(x-b))| vanishes when a)a + b + c = 0 b) x = (1)/(3) (a + b + c) c) x = (1)/(2) (a + b + c) d) x = a + b + c

If a,b,c in Q then (b-c)x^(2)+(c-a)x+(a-b)=0

If x, a, b, c are real and (x-a+b)^(2)+(x-b+c)^(2)=0 , then a, b, c are in

If x, a, b, c are real and (x-a+b)^(2)+(x-b+c)^(2)=0 , then a, b, c are in