Home
Class 12
MATHS
|[(b+c)^(2),a^(r),a^(2)],[b^(2),(c+a)^(2...

|[(b+c)^(2),a^(r),a^(2)],[b^(2),(c+a)^(2),b^(2)],[c^(2),c^(2),(a+b)^(-)]|=2san(a+b+c)^(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: |[(b+c)^2,a^2,a^2],[b^2,(c+a)^2,b^2],[c^2,c^2,(a+b)^2]|=2a b c(a+b+c)^3

Prove that: |[(b+c)^2,a^2,a^2],[b^2,(c+a)^2,b^2],[c^2,c^2,(a+b)^2]|=2a b c(a+b+c)^3

Prove that: |[(b+c)^2,a^2,a^2],[b^2,(c+a)^2,b^2],[c^2,c^2,(a+b)^2]|=2a b c(a+b+c)^3

Prove that: |[(b+c)^2,a^2,a^2],[b^2,(c+a)^2,b^2],[c^2,c^2,(a+b)^2]|=2a b c(a+b+c)^3

Prove that |{:((b+c)^(2), a^(2), bc),((c+a)^(2), b^(2), ca),((a+b)^(2), c^(2), ab):}|= (a-b) (b-c)(c-a)(a + b+c) (a^(2) + b^(2) + c^(2)) .

Show that |{:(a,b,c),(b,c,a),(c,a,b):}|^2=|{:(2bc-a^(2),c^(2),b^(2)),(c^(2),2ac-b^(2),a^(2)),(b^(2),a^(2),2ab-c^(2)):}|=(a^(3)+b^(3)+c^(3)-3abc)^(2)

Prove the identities: |[a^2,a^2-(b-c)^2,b c], [b^2,b^2-(c-a)^2,c a],[ c^2,c^2-(a-b)^2,a b]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

Prove the identities: |[a^2,a^2-(b-c)^2,b c], [b^2,b^2-(c-a)^2,c a],[ c^2,c^2-(a-b)^2,a b]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

If a,b,c are in G.P.,prove that: a(b^(2)+c^(2))=c(a^(2)+b^(2))A^(2)b^(2)c^(2)((1)/(a^(3))+(1)/(b^(3))+(1)/(c^(3)))=a^(3)+b^(3)+c^(3)((a+b+c)^(2))/(a^(2)+b^(2)+c^(2))=(a+b+c)/(a-b+c)(1)/(a^(2)-b^(2))+(1)/(b^(2))=(1)/(b^(2)-c^(2))(a+2b=2c)(a-2b+2c)=a^(2)+4c^(2)