Home
Class 12
MATHS
y = 2 sin^(-1) ((x-2)/sqrt6) - sqrt(2 + ...

` y = 2 sin^(-1) ((x-2)/sqrt6) - sqrt(2 + 4x - x^2)` then show that `(dy)/(dx) |_(x=2) = 2/sqrt6`

Text Solution

Verified by Experts

`y = 2sin^-1((x-2)/sqrt6)-sqrt(2+4x-x^2)`
`dy/dx = 2(1/sqrt(1-((x-2)/sqrt6)^2))(1/sqrt6) - 1/2(1/(sqrt(2+4x-x^2)))(4-2x)`
`=>dy/dx|_(x=2) = 2(1/(1-0))(1/sqrt6)-1/2(4-4) = 2/sqrt6 `
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=2sin^(-1)((x-2)/(sqrt(6)))-sqrt(2+4x-x^(2)) then prove that (dy)/(dx) at x=2 is (2)/(sqrt(6))

If y= 2"sin"^(-1)(x-2)/(sqrt(6))-sqrt(2+4x-x^(2)) , show that (dy)/(dx)" at " x=2 " is " (2)/(sqrt(6)) .

if y=sqrt(x^(2)+a^(2)), then show that y(dy)/(dx)=x

If y = sin^(-1){(5x+12sqrt(1-x^2))/13} then show that (dy)/(dx) = 1/sqrt(1-x^2)

If y = sin^(-1) x^2 sqrt(1 - x^2) + xsqrt(1 - x^4) , show that (dy)/(dx) - (2x)/(sqrt(1 - x^4)) = 1/(sqrt(1 - x^2))

If y = tan^(-1)((sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))) , then show that (dy)/(dx) = x/(sqrt(1 - x^4))

If y = tan^(-1) ((sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))) show that (dy)/(dx) = x/sqrt(1-x^4) .

If sqrt(y+x) + sqrt(y-x) = a , then show that dy/dx = 2x/a^2

If y=sqrt(x)+(1)/sqrt(x) , then show that 2x(dy)/(dx)+y=2sqrt(x) .

If y=sqrt(x)+(1)/sqrt(x) , then show that 2x(dy)/(dx)+y=2sqrt(x) .