Home
Class 12
MATHS
In a triangle ABCD if the sides a,b be c...

In a triangle ABCD if the sides a,b be constants and the base angle A and B vary, then show that, `(dA)/sqrt(a^2 - b^2 sin^2 A) = (dB)/sqrt(b^2 - a^2 sin^2 B)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC if the sides a, b be constant and the base angles A and B vary, then show that , (dA)/sqrt(a^2-b^2sin^2A) =(dB)/sqrt(b^2-a^2 sin^2B)

In an acute triangle ABC if sides a,b are constants and the base angles A and B vary, then show that (dA)/(sqrt(a^(2)-b^(2)sin^(2)A))=(dB)/(sqrt(b^(2)-a^(2)sin^(2)B))

In an acute triangle A B C if sides a , b are constants and the base angles Aa n dB vary, then show that (d A)/(sqrt(a^2-b^2sin^2A))=(d B)/(sqrt(b^2-a^2sin^2B))

In an acute triangle A B C if sides a , b are constants and the base angles Aa n dB vary, then show that (d A)/(sqrt(a^2-b^2sin^2A))=(d B)/(sqrt(b^2-a^2sin^2B))

In an acute triangle A B C if sides a , b are constants and the base angles Aa n dB vary, then show that (d A)/(sqrt(a^2-b^2sin^2A))=(d B)/(sqrt(b^2-a^2sin^2B))

In an acute triangle A B C if sides a , b are constants and the base angles Aa n dB vary, then show that (d A)/(sqrt(a^2-b^2sin^2A))=(d B)/(sqrt(b^2-a^2sin^2B))

In the triangle ABC, if the sides a,b reamain constant but the base angles A and B very, then show that, (dA)/(sqrt(a^(2) - b^(2) sin^(2)A)) = (dB)/(sqrt(b^(2) - a^(2) sin^(2)B)).

Find acute angles A and B when 2 sin (A+ B) = sqrt3 and 2 cos (A-B) = sqrt3

In any triangle ABC if sin A sin B sin C+ cos A cos B=1 , then show that a:b:c=1:1: sqrt(2) .