Home
Class 11
MATHS
If sin(B+C-A),sin(C+A-B),sin(A+B-C) are ...

If `sin(B+C-A),sin(C+A-B),sin(A+B-C)` are in A.P than `cotA,cotB,cotC` are in

Promotional Banner

Similar Questions

Explore conceptually related problems

sin(B+C-A),sin(C+A-B),sin(A+B-C)sin(B+C-A),sin(C+A-B),sin(A+B-C) are A.P., then cot A,cot B,cot C are in GP(b)HP(c)AP(d) none of these

In a triangle ABC,if sin A sin(B-C)=sin C sin(A-B), then prove that cot A,cot B,cot C are in A.P.

In /_\ABC if a^2,b^2,c^2 are in AP then cotA,cotB,cotC are also in AP

If in a !ABC , sin A, sin B and sin C are in A.P, then

If in a !ABC , sin A, sin B and sin C are in A.P, then

In a triangle ABC, if sinAsin(B-C)=sinCsin(A-B), then prove that cotA ,cotB ,cotC are in AdotPdot

In a triangle ABC, if sinAsin(B-C)=sinCsin(A-B), then prove that cotA ,cotB ,cotC are in AdotPdot

In a triangle ABC, if sinAsin(B-C)=sinCsin(A-B), then prove that cotA ,cotB ,cotC are in AdotPdot

In a triangle ABC, if sin A sin (B-C)= sin c sin (A-B) , then prove that cotA, cotB, CotC are in AP.

If a^(2),b^(2) and c^(2) are in AP, then cotA, cotB and cotC are in