Home
Class 12
MATHS
for any two vectors vec a and vec b, sh...

for any two vectors ` vec a and vec b`, show that `| vec a. vec b| <= |vec a| | vec b|`

Promotional Banner

Similar Questions

Explore conceptually related problems

For any two vectors veca and vec b show that |vec a. vec b| le |vec a||vec b| .

For any two vectors vec(a) and vec(b) , show that | vec (a).vec(b)| le |vec(a)||vec(b)|

For any two vectors vec a and vec b , show that : ( vec a+ vec b)dot( vec a- vec b)=0, when | vec a|=| vec b|dot

For any two vectors veca and vec b show that |vec a.vec b|le |vec a|.|vecb|

For any two vectors vec a and vec b prove that | vec a + vec b | <= | vec a | + | vec b |

For any two vectors vec a and vec b , prove that (vec a* vec b)^ 2 le |quad vec a|^2|quad vec b|^2 .

For any two vectors vec a and hat b, show that (vec a+vec b)*(vec a-vec b)=0hat harr|vec a|=|vec b|

For any three vectors vec a,vec b and vec c , show that vec a- vec b,vec b- vec c and vec c- vec a are coplanar.

For any two vectors vec a and vec b, we always have |vec a+ vec b|<=|vec a|+|vec b|

For any two vectors vec a and vec b, prove that ((vec a) / (| vec a | ^ (2)) - (vec b) / (| vec b | ^ (2))) ^ (2) = ((vec a-vec b) / (| vec a || vec b |)) ^ (2)