Home
Class 11
MATHS
If (sin^4x)/2+(cos^4x)/3=1/5t h e n ta...

If `(sin^4x)/2+(cos^4x)/3=1/5t h e n` `tan^2x=2/3` (b) `(sin^8x)/8+(cos^8x)/(27)=1/(125)` `tan^2x=1/3` (d) `(sin^8x)/8+(cos^8x)/(27)=2/(125)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (sin^4x)/2+(cos^4x)/3=1/5t h e n (a) tan^2x=2/3 (b) (sin^8x)/8+(cos^8x)/(27)=1/(125) (c) tan^2x=1/3 (d) (sin^8x)/8+(cos^8x)/(27)=2/(125)

If (sin^4x)/2+(cos^4x)/3=1/5 then (a) tan^2x=2/3 (b) (sin^8x)/8+(cos^8x)/(27)=1/(125) (c) tan^2x=1/3 (d) (sin^8x)/8+(cos^8x)/(27)=2/(125)

If (sin^(4)x)/(2)+(cos^(4)x)/(3)=(1)/(5) then tan^(2)x=(2)/(3)(b)(sin^(8)x)/(8)+(cos^(8)x)/(27)=(1)/(125)tan^(2)x=(1)/(3)(d)(sin^(8)x)/(8)+(cos^(8)x)/(27)=(2)/(125)

int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx

int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx

int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx=

int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx=

int (sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx =

int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx=

int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx