Home
Class 12
MATHS
e^(ax)sin^(-1)hx...

e^(ax)sin^(-1)hx

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the derivative of the following function with respect to 'x' e^(ax).sin^-1bx

sin^(-1)(ax)

e^(ax).sin^-1bx

e^(ax).sin^-1bx

If f(x) = frac{sin^(-1)x}{sqrt (1-x^2)} , g(x)=e^(sin^(-1)x) , then int f(x)g(x) dx =........................ A) e^(sin^(-1)x) (sin^(-1)x-1) + c B) e^( sin^(-1)x) (1- sin^(-1)x) + c C) e^(sin^(-1)x) (sin^(-1)x+1) + c D) -e^(sin^(-1)x) (sin^(-1)x-1) + c

Find derivative of y=e^(ax)sin bx

find y_(n) where y=e^(ax)sin bx

Verify that the function y=c_(1)e^(ax)cos(bx)+c_(2)e^(ax)sin(bx)

d/(dx)[(e^(ax))/(sin(bx+c))]=

d/(dx)[e^(ax)/(sin(bx+c))]=