Home
Class 12
MATHS
sec^(-1)(x+1)/(x-1)+sin^(-1)(x-1)/(x+1)...

sec^(-1)(x+1)/(x-1)+sin^(-1)(x-1)/(x+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the solution of sin^(-1)(x/(1+x))-"sin"^(-1)(x-1)/(x+1)="sin"^(-1)1/(sqrt(1+x))

sec^(-1) x + cosec^(-1) x + cos^(-1) (x^(-1) ) + sin^(-1) ( x^(-1) ) = ….. (where |x| ge 1 , x in R )

If sec^(-1) x = "cosec" ^(-1) y , then the valuw of cos^(-1) ""(1)/(x) - sin ^(-1)""(1)/(y) will be

3sec^(-1)(1/x)-sin^(-1)(4x^(3)-3x)=

If "cosec"^(-1)x=sec^(-1)y , then the value of ("sin"^(-1)(1)/(x)+"sin"^(-1)(1)/(y)) is -

sin^-1((x-1)/(x+1))+sec^-1((x+1)/(x-1))

If y = sec^(-1) (sqrt(x+1)/(sqrt(x-1)))+ sin^(-1)(sqrt(x-1)/(sqrt(x+1))) then (dy)/(dx) =

Find the value of sin^(-1)(2^x) (ii) cos^(-1)sqrt(x^2-x+1) tan^(-1)(x^2)/(1+x^2) (iv) sec^(-1)(x+1/x)

The value of x where x gt 0 and tan (sec ^(-1)((1)/(x)))=sin (tan ^(-1) 2) Is