Home
Class 12
MATHS
[" Let "I=int(e^(x))/(e^(4x)+e^(2x)+1)dx...

[" Let "I=int(e^(x))/(e^(4x)+e^(2x)+1)dx,J=int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx" .Then,for an arbitrary constant "C" ,the value of "J-1],[" is equal to: "],[[" (A) "(1)/(2)ln|(e^(4x)-e^(2x)+1|)/(e^(4x)+e^(2x)+1|)+c," (B) "(1)/(2)ln|(e^(2x)+e^(x)+1)/(e^(2x)-e^(x)+1)|+c],[" (C) "(1)/(2)ln|(e^(2x)-e^(x)+1)/(e^(2x)+e^(x)+1)|+c," (D) "(1)/(2)" en "x=2x+1|]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let I = int (e^x)/(e^(4x)+e^(2x)+1)dx, J=int (e^(-x))/(e^(-4x)+e^(-2x)+1)dx . Then , for an arbitrary constant c, the value of J-1 euqals :

Let I =int(e^(x))/(e^(4x)+e^(2x)+1)dx , J = int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx . Then for an arbitary constant C, the value of I - J equals

If I=int(e^(x))/(e^(4x)+e^(2e)+1)dx.J=int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx Then for an arbitrary constant c, the value of J-I equal to

If I=int(e^x)/(e^(4x)+e^(2x)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) dx. Then for an arbitrary constant c, the value of J-I equal to

If I=int(e^x)/(e^(4x)+e^(2x)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) dx. Then for an arbitrary constant c, the value of J-I equal to

If I=int(e^x)/(e^(4x)+e^(2x)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) dx. Then for an arbitrary constant c, the value of J-I equal to

If I=int(e^x)/(e^(4x)+e^(2e)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) dx. Then for an arbitrary constant c, the value of J-I equal to

I=int(e^(2x)-1)/(e^(2x))dx

int (e^(x))/((e^(x)+2)(e^(x)-1))dx=