Home
Class 12
MATHS
If f(x) = (e^x+e^(-x))/2 then inverse of...

If `f(x) = (e^x+e^(-x))/2` then inverse of `f(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(e^(x)+e^(-x))/(2) then the inverse of f(x) is

If f(x) =(e^(x) + e^(-x))/2 , then the inverse function of f(x) is:

f(x) = (e^(x)-e^(-x))/(e^(x)+e^(-x))+2 . The inverse of f(x) is ........

f(x)=e^x-e^(-x) then find f'(x)

f(x)=e^x-e^(-x) then find f'(x)

If e^(x)+e^(f(x))=e then domain of f(x) is

If e^(x) + e^(f(x)) =e , then domain of f(x) is:

Let f: RrarrR be defined by f(x)=(e^x-e^(-x))//2dot then find its inverse.

Let f: RrarrR be defined by f(x)=(e^x-e^(-x))//2dot then find its inverse.

Let f: RrarrR be defined by f(x)=(e^x-e^(-x))//2dot then find its inverse.