Home
Class 12
MATHS
A=[[1,1,1],[1,1,1],[1,1,1]]" .then "A^(2...

A=[[1,1,1],[1,1,1],[1,1,1]]" .then "A^(2)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If A= [[1,1,1],[1,1,1],[1 ,1,1]] then A^(2)=

if A=[[1,1,1],[1,1,1],[1,1,1]] then find A^2

If A = [[1,1,1],[1,1,1],[1,1,1]], A^(2) =

If A=[[1,1,1],[1,2,1],[1,1,2]] ,then prove that A^(-1)=[[3,-1,-1],[-1,1,0],[-1,0,1]]

If A=[(2,1,1),(1,3,1),(1,2,1)] then A^(T)=

The ranks of the matrices in descending order A= [[1, 4, -1],[2, 3, 0],[0, 1, 2]] B= [[1, 1, 1],[1,1,1],[1,1,1]] C= [[1,2, 3],[2,3, 4],[ 0, 1, 2]]

If A=[(2,-1,1),(-1,2,-1),(1,-1,2)] then A^(2)=

Let A^(-1)=[[1,-1,2-1,2,12,1,-1]], then

If A = [(2,2,1), (1,3,1), (1,2,2)] then A^-1+(A-5I) (AI)^2 = (i) 1/ 5 [[4,2, -1], [-1,3,1], [-1,2,4]] (ii) 1/5 [[4, -2, -1], [-1, 3, -1], [-1, -2,4]] (iii) 1/3 [[4,2, -1], [-1,3,1], [-1,2,4]] (iv) 1/3 [[4, -2, -1], [-1,3, -1], [-1, -2,4]]