Home
Class 12
MATHS
If the variable line 3x - 4y + k = 0 lie...

If the variable line `3x - 4y + k = 0` lies between the circles `x^2 + y^2 - 2x - 2y + 1 = 0` and `x^2 + y^2 - 16x-2y +61 =0` without intersecting or touching either circle, then the range of `k` is `(a, b)` where `a, b in I` Find the value of `(b-a).`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of k for which the circles x^2 - y^2 + 3x - 7y +k = 0 and x^2 + y^2 - 4x + 2y - 14 = 0 would intersect orthogonallys

Find number of integral values of k for which the line 3x + 4y - k = 0 , lies between the circles x^2 + y^2 - 2x - 2y + 1 = 0 and x^2 + y^2 - 18 x - 12 y + 113 = 0 , without cutting a chord on either of circle.

The range of parameter ' a ' for which the variable line y=2x+a lies between the circles x^2+y^2-2x-2y+1=0 and x^2+y^2-16 x-2y+61=0 without intersecting or touching either circle is a in (2sqrt(5)-15 ,0) a in (-oo,2sqrt(5)-15 ,) a in (0,-sqrt(5)-10) (d) a in (-sqrt(5)-1,oo)

The range of parameter ' a ' for which the variable line y=2x+a lies between the circles x^2+y^2-2x-2y+1=0 and x^2+y^2-16 x-2y+61=0 without intersecting or touching either circle is (a) a in (2sqrt(5)-15 ,0) (b) a in (-oo, 2sqrt(5)-15,) (c) a in (2sqrt(5)-15,-sqrt(5)-1) (d) a in (-sqrt(5)-1,oo)

The range of parameter ' a ' for which the variable line y=2x+a lies between the circles x^2+y^2-2x-2y+1=0 and x^2+y^2-16 x-2y+61=0 without intersecting or touching either circle is (a) a in (2sqrt(5)-15 ,0) (b) a in (-oo, 2sqrt(5)-15,) (c) a in (2sqrt(5)-15,-sqrt(5)-1) (d) a in (-sqrt(5)-1,oo)

If x + y+ k =0 touches the circle x ^(2) + y^(2) -2x -4y + 3 =0, then k can be

If x + y+ k =0 touches the circle x ^(2) + y^(2) -2x -4y + 3 =0, then k can be

The range of parameter a' for which the variable line y=2x+a lies between the circles x^(2)+y^(2)-2x-2y+1=0 and x^(2)+y^(2)-16x-2y+61=0 without intersecting or touching either circle is a in(2sqrt(5)-15,0)a in(-oo,2sqrt(5)-15,)a in(0,-sqrt(5)-1)( d) a in(-sqrt(5)-1,oo)

Find k , if the line y = 2x + k touches the circle x^(2) + y^(2) - 4x - 2y =0