Home
Class 10
MATHS
(cosA-sinA+1)/(cosA+sinA-1)=c o s e c A+...

`(cosA-sinA+1)/(cosA+sinA-1)=c o s e c A+cotA`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following identity, where the angles involved are acute angles for which the expressions are defined. (v) (cosA-sinA+1)/(cosA+sinA-1)=cosec A+cotA

Prove that (cosA-sinA+1)/(cosA+sinA-1) =cosec A+ cot A using the identity cosec^(2)A=1+cot^(2)A .

Prove that (cosA-sinA+1)/(cosA+sinA-1) = cosecA+cotA

Prove the following identities,where the angles involved are acute angles for which the expressions are defined. (v) (cosA-sinA+1)/(cosA+SinA-1)=cosecA+cotA.

cosA/(1−sinA) =

Prove that (cotA-cosA)/(cotA+cosA)=(c o s e cA-1)/(c o s e cA+1) .

((cosA+sinA)/(cosA-sinA))-((cosA-sinA)/(cosA+sinA))=

Prove: (sinA)/(secA+tanA-1)+(cosA)/(cos e c\ A+cotA-1)=1

Prove the following : (cosA+sinA)/(cosA-sinA)-(cosA-sinA)/(cosA+sinA) = 2tan2A

Prove that: (1+cosA+sinA)/(1+cosA-sinA)=(1+sinA)/(cosA)