Home
Class 14
MATHS
[" The gradient of the tangent line at t...

[" The gradient of the tangent line at the point "],[(a cos alpha,a sin alpha)" to the circle "x^(2)+y^(2)=a^(2)," is- "],[[" (A) "tan(pi-alpha)," (B) "tan alpha],[" (C) "cot alpha," (D) "-cot alpha]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Equation to the tangent at (a(1+cos alpha), a sin alpha) on the circle x^(2)+y^(2)-2ax=0 is

The line x sin alpha- ycos alpha = a touches the circle x^(2) +y^(2) =a^(2) ,then

If the straight line y= x sin alpha + a sec alpha is a tangent to the circle x^(2) + y^(2) = a^(2) then-

The line x sin alpha - y cos alpha =a touches the circle x ^(2) +y ^(2) =a ^(2), then,

If the line y cos alpha=x sin alpha+a cos alpha be a tangtnt to the circle x^(2)+y^(2)=a^(2) then

If line x cos alpha + y sin alpha = p " touches circle " x^(2) + y^(2) =2ax then p =

If the line y cos alpha = x sin alpha +a cos alpha be a tangent to the circle x^(2)+y^(2)=a^(2) , then

If the line y cos alpha = x sin alpha +a cos alpha be a tangent to the circle x^(2)+y^(2)=a^(2) , then

If the straight line y= x sin alpha+ a sec alpha be a tangent ot the circle x^(2)+y^(2)=a^(2) , then show that cos^(2)alpha=1