Home
Class 12
MATHS
let a=min[x^2+2x+3 , x in R] and b=lim(x...

let `a=min[x^2+2x+3 , x in R]` and `b=lim_(x->0) (sinxcosx)/(e^x-e^-x)` then the value of `sum_(r=0)^n a^r b^(n-r)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a= min { x^2+2x+3:x in R}and b=lim_(x to0) (sin xcos x) /(e^x-e^-x) . Then the value of sum_(r=0)^(n) a^r,b^(n-r) , is

Let a= min { x^2+2x+3:x in R}and b=lim_(x to0) (sin xcos x) /(e^x-e^-x) . Then the value of sum_(r=0)^(n) a^r,b^(n-r) , is

Let a=min {x^2+2x+3, x in R} and b=lim_(theta->0)(1-costheta)/(theta^2) then the value of sum_(r=0)^n a^r*b^(n-r) is :

Let a=min {x^2+2x+3, x in R} and b=lim_(theta->0)(1-costheta)/(theta^2) then the value of sum_(r=0)^n a^r*b^(n-r) is :

Let a=min{ x^2+2x+3, x in R } and b=lim_(thetararr0)(1-costheta)/(theta^2) . Then the value of sum_(r=0)^na^rb^(n-r)

Let a=min{x^(2)+2x+3,x in R} and b=lim_(theta rarr0)(1-cos theta)/(theta^(2)) then the value of sum_(r=0)^(n)a^(r)*b^(n-r) is :

Let a=min{x^(2)+2x+3,x in R} and b=lim_(theta rarr0)(1-cos theta)/(theta^(2)) then the value of sum_(r=0)^(n)a^(r)*b^(n-r) is :

If a=min(x^(2)+4x+5,x in R) and b=lim_(theta rarr0)(1-cos2 theta)/(theta^(2)) then the value of sum_(r=0)^(n)a^(r)b^(n-r) is

If a=min {x^2+4x+5:x in R} and b=lim_(thetato 0) (1-cos 2theta)/(theta^2) , then the value of sum_(r=0)^(n) .^nC_ra^rb^(n-r) , is