Home
Class 12
MATHS
|[a,a+b],[a+2b,a-a+b],[a+b,a+2b]|[a+2b],...

|[a,a+b],[a+2b,a-a+b],[a+b,a+2b]|[a+2b],[a]|=9(a+b)b^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

a a+b a+2b 10. Using properties of determinants, show that |[a,a+b,a+2b],[a+2b,a,a+b],[a+b,a+2b,a]|=9b^2(a+b)

Without expanding the determinants,show that |(a,a+b,a+2b),(a+2b,a,a+b),(a+b,a+2b,a)|=9(a+b)b^2

Without expanding, prove the following |(a,a+b,a+2b),(a+2b,a,a+b),(a+b,a+2b,a)|=9(a+b)b^2

Prove: |(a, a+b, a+2b),( a+2b, a ,a+b ),(a+b, a+2b, a)|=9(a+b)b^2

Prove: |(a, a+b, a+2b),( a+2b, a ,a+b ),(a+b, a+2b, a)|=9(a+b)b^2

The value of Delta = |(a,a +b,a +2b),(a +2b,a,a +b),(a +b,a +2b,a)| is equal to

Using properties of determinant show that : |(a,a+b,a+2b),(a+2b,a,a+b),(a+b,a+2b,a)|=9b^2(a+b)

Using properties of determinats show that |{:(a,a+b,a+2b),(a+2b,a,a+b),(a+b,a+2b,a):}|=9b^2(a+b)

Prove |[1+a^2-b^2, 2 a b, -2 b],[ 2 a b, 1-a^2+b^2, 2 a],[ 2 b, -2 a, 1-a^2-b^2]|=(1+a^2+b^2)^3

|[a, a+2b, a+2b+3c], [3a, 4a+6b, 5a+7b+9c], [6a, 9a+12b, 11a+15b+18c]|=?