Home
Class 12
MATHS
Find (dy)/(dx), if y=sin^(-1)[xsqrt(\ 1-...

Find `(dy)/(dx),` if `y=sin^(-1)[xsqrt(\ 1-x)-\ sqrt(x)\ sqrt(1-x^2)\ ]\ `

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx), if y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]

Find the (dy)/(dx) of y=sin^(-1)(xsqrt(1-x)+sqrt(x)sqrt(1-x^2))

Find the (dy)/(dx) of y=sin^(-1)sqrt(1-x^2)

If y = sin^-1[xsqrt(1-x) - sqrtx (sqrt(1-x^2))] find dy/dx

Find (dy)/(dx)" if y"=sqrt(sin^(-1) sqrt(x)) .

If y=sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^(2))] then find (dy)/(dx)

If y=sin^(-1)[xsqrt(1-x) - sqrtxsqrt(1-x^(2))], find (dy)/(dx),

If y=sin ^(-1) (xsqrt( 1-x) +sqrt(x) sqrt (1-x^(2))),then (dy)/(dx)=

Find (dy)/(dx) of y=(sinx)^x+sin^(-1)sqrt(x) .