Home
Class 12
MATHS
If f(x)=[sin x]+[cos x], x in [0,2pi], w...

If f(x)=[sin x]+[cos x], `x in [0,2pi]`, where [.] denotes the greatest integer function. Then, the total number of points, where f(x) is non-differentiable, is (A) `2` (B) `3` (C) `5` (D) `4`

Promotional Banner

Similar Questions

Explore conceptually related problems

5.f(x)=[sinx]+[cos] ,x epsilon [0,2pi], where[.] denotes the greatest integer function. Total number of point where f (x) is non-differentiable is equal to (A) 2 (B) 3 (C) 5 (D) 4

If [sin x]+[sqrt(2) cos x]=-3 , x in [0,2pi] , (where ,[.] denotes the greatest integer function ), then

f(x)=[sinx]+[cosx] , x epsilon [0,2pi] , where[.] denotes the greatest integer function. Total number of point where f (x) is non-differentiable is equal to i) 2 ii) 3 iii) 4 iv) 5

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

Let f(x)=[sinx + cosx], 0ltxlt2pi , (where [.] denotes the greatest integer function). Then the number of points of discontinuity of f(x) is :

f(x)=1+[cos x]x in 0<=x<=(pi)/(2) (where [.] denotes greatest integer function)

Let f(x)=[x]cos ((pi)/([x+2])) where [ ] denotes the greatest integer function. Then, the domain of f is

f(x)=2^(cos^(4)pi x+x-[x]+cos^(2)pi x), where [.] denotes the greatest integer function.

f(x)=1+[cos x]x, in 0<=x<=(x)/(2) (where [.] denotes greatest integer function)

If f(x)=cos |x|+[|sin x/2|] (where [.] denotes the greatest integer function), then f (x) is