Home
Class 10
MATHS
Prove that (1)/(("cosec" theta - cot t...

Prove that
`(1)/(("cosec" theta - cot theta))-(1)/(sin theta)=(1)/(sin theta)- (1)/(("cosec" theta+ cot theta)). `

Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(csc theta-cot theta)-(1)/(sin theta)=(1)/(sin theta)-(1)/(csc theta+cot theta)

Prove the following identity : 1/(cosec theta- cot theta)-1/(sin theta) =1/(sin theta)- 1/(cosec theta+cot theta) .

Prove that: ("cosec" theta + cot theta)/("cosec" theta - cot theta) = ("cosec" theta + cot theta )^(2) = 1 + 2 cot^(2) theta + 2 "cosec" theta cot theta .

Prove that (1+sin theta)/(csc theta-cot theta)-(1-sin theta)/(csc theta+cot theta)=2(1+cot theta)

Prove that (cos theta-sin theta+1)/(cos theta+sin theta-1)=csc theta+cot theta

(1)/(cosec theta+cot theta)=cosec theta-cot theta

prove that (cosec theta + cot theta)/(cosec theta- cot theta) = (cosec theta +cot theta)^2

Prove that (1+cosec theta -cot theta)/(1+cosec theta+cot theta)=(1-cos theta)/sin theta.

(1/(cos theta)-1/(sin theta))+1/(cosec theta-cot theta)-1/(sec theta+tan theta) =?