Home
Class 12
MATHS
If x=tan^(-1)t, and y=t^3, find dy/dx....

If `x=tan^(-1)t`, and `y=t^3`, find `dy/dx`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=te^(t) and y=1+log t, find (dy)/(dx)

If y=t^2 and x=t^3 find, dy/dx at t=1 .

If x=a(cos t+(1)/(2)log tan^(2)t) and y=a sin t then find (dy)/(dx) at t=(pi)/(4)

if x = t + (1)/(t), y = t - 1/t find dy/dx

If y = t + 1/t and x = t - 1/t find dy/dx

If x=t^(2),y=t^(3) find (dy)/(dx)

If x=t^(3) and y=t^(4) then (dy)/(dx) at "t=-1" is

If x=log(1+t^2) and y=t-tan^-1 t , then dy/dx is

IF [x= a {(1 + t^2) /(1-t^2)] and [y= 2t/(1 -t^2)] find dy/dx.

If x=log(1+t^(2)),y=t-tan^(-1)t , find (dy)/(dx) .