Home
Class 12
MATHS
If the function f:[0,8]toR is differenti...

If the function `f:[0,8]toR` is differentiable, then for `0ltbetalt1` and `0lt alpha lt 2, int_(0)^(8)f(t)dt` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f:[0,8]toR is differentiable, then for 0ltalphalt1 and 0lt beta lt 2, int_(0)^(8)f(t)dt is equal to

If the function f : [0,8] to R is differentiable, then for 0 < alpha <1 < beta < 2 , int_0^8 f(t) dt is equal to (a) 3[alpha^3f(alpha^2)+beta^2f(beta^2)] (b) 3[alpha^3f(alpha)+beta^2f(beta)] (c) 3[alpha^3f(alpha^2)+beta^2f(beta^3)] (d) 3[alpha^2f(alpha^3)+beta^2f(beta^3)]

If the function f : [0,8] to R is differentiable, then for 0 < alpha <1 < beta < 2 , int_0^8 f(t) dt is equal to (a) 3[alpha^3f(alpha^2)+beta^2f(beta^2)] (b) 3[alpha^3f(alpha)+beta^2f(beta)] (c) 3[alpha^3f(alpha^2)+beta^2f(beta^3)] (d) 3[alpha^2f(alpha^3)+beta^2f(beta^3)]

If the function f : [0,8] to R is differentiable, then for 0 < alpha <1 < beta < 2 , int_0^8 f(t) dt is equal to

If the function f:[0,8]rarr R is differentiable then for 0

If the function f:[0,16]rarr R is differentiable. If 0

Given a function f:[0,4]toR is differentiable ,then prove that for some alpha,beta in (0,2), int_(0)^(4)f(t)dt=2alphaf(alpha^(2))+2betaf(beta^(2)) .

Given a function f:[0,4]toR is differentiable ,then prove that for some alpha,beta in (0,2), int_(0)^(4)f(t)dt=2alphaf(alpha^(2))+2betaf(beta^(2)) .

Given a function f:[0,4]toR is differentiable ,then prove that for some alpha,beta epsilon(0,2), int_(0)^(4)f(t)dt=2alphaf(alpha^(2))+2betaf(beta^(2)) .