Home
Class 11
MATHS
cos 4x- cos 4alpha= 8 (cos x-cosalpha) (...

`cos 4x- cos 4alpha= 8 (cos x-cosalpha) (cos x +cosalpha) (cos x- sinalpha) (cos x + sinalpha)`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(cos2x-cos2alpha)/(cosx-cosalpha)dx

int(cos2x-cos2alpha)/(cosx-cosalpha)dx

int(cos2x-cos2alpha)/(cosx-cosalpha)dx

int(cos2x-cos2alpha)/(cosx-cosalpha)dx

One side of a square makes an angle alpha with x axis and one vertex of the square is at origin. Prove that the equations of its diagonals are x(sin alpha+ cos alpha) =y (cosalpha-sinalpha) or x(cos alpha-sin alpha) + y (sin alpha + cos alpha) = a , where a is the length of the side of the square.

One side of a square makes an angle alpha with x axis and one vertex of the square is at origin. Prove that the equations of its diagonals are x(sin alpha+ cos alpha) =y (cosalpha-sinalpha) or x(cos alpha-sin alpha) + y (sin alpha + cos alpha) = a , where a is the length of the side of the square.

Integrate the functions (cos2x-cos2alpha)/(cosx-cosalpha)

A square of side ' a ' lies above the x-axis and has one vertex at the origin. The side passing through the origin makes an angle alpha (0ltalphaltpi/ 4) with the positive direction of x-axis. equation its diagonal not passing through origin is: a. y(cosalpha-sinalpha)-x(sinalpha-cosalpha)=a b. y(cosalpha+sinalpha)+x(sinalpha-cosalpha)=a c. y(cosalpha-sinalpha)+x(sinalpha+cosalpha)=a d. y(cosalpha+sinalpha)-x(cosalpha+sinalpha)=a

A square of side a lies above the x-axis and has one vertex at the origin. The side passing through the origin makes an angle alpha(0ltalphaltpi/ 4) with the positive direction of x-axis. equation its diagonal not passing through origin is (a) y(cosalpha+sinalpha)+x(sinalpha-cosalpha)="a (b) y(cosalpha+sinalpha)+x(sinalpha+cosalpha)=a (c) y(cosalpha+sinalpha)+x(cosalpha-sinalpha)=a (d) y(cosalpha-sinalpha)-x(sinalpha-cosalpha)=a