Home
Class 11
MATHS
If 2t a nalpha/2=tan(beta/2) , prove th...

If `2t a nalpha/2=tan(beta/2)` , prove that `cosalpha=(3+5cosbeta)/(5+3cosbeta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2\ t a nalpha=3t a nbeta, prove that tan(alpha-beta)=(sin2beta)/(5-cos2beta)

If 2tan""(alpha)/(2) = tan ""(beta)/(2) , then (3+5cosbeta)/(5+3cosbeta) is equal to :

If 2tan""(alpha)/(2) = tan ""(beta)/(2) , then (3+5cosbeta)/(5+3cosbeta) is equal to :

Prove that |cosalpha-cosbeta|lt=|alpha-beta|

Prove that |cosalpha-cosbeta|lt=|alpha-beta|

Prove that |cosalpha-cosbeta|lt=|alpha-beta|

If alpha+beta=(pi)/(2) , then prove that cosalpha=sqrt((sinalpha)/(cosbeta)-sinalphacosbeta)

If cosalpha+cosbeta=0=sinalpha+sinbeta , then prove that cos2alpha +cos2beta=-2cos(alpha +beta) .

If cosalpha+cosbeta=0=sinalpha+sinbeta , then prove that cos2alpha +cos2beta=-2cos(alpha +beta) .

If cosalpha+cosbeta=0=s inalpha+s inbeta, then prove that cos2alpha+cos2beta=-2cos(alpha+beta)dot