Home
Class 11
MATHS
A right triangle has perimeter of length...

A right triangle has perimeter of length 7 and hypotenuse of length `3.` If `theta` is the larger non-right angle in the triangle, then the value of `costhetae q u a ldot` `(sqrt(6)-sqrt(2))/4` (b) `(4+sqrt(2))/6` `(4-sqrt(2))/3` (d) `(4-sqrt(2))/6`

Promotional Banner

Similar Questions

Explore conceptually related problems

A right triangle has perimeter of length 7 and hypotenuse of length 3. If theta is the larger non-right angle in the triangle, then the value of costheta equal

A right triangle has perimeter of length 7 and hypotenuse of length 3. if theta is the larger non-right angle in the triangles, then the value of cos theta equals

A right triangle has perimeter of length 7 and hypotenuse of length 3. If theta is the larger non- right angle in the triangle,then the value of cos theta equal.(sqrt(6)-sqrt(2))/(4) (b) (4+sqrt(2))/(6)(4-sqrt(2))/(3) (d) (4-sqrt(2))/(6)

If a=(4sqrt(6))/(sqrt(2)+sqrt(3))

4^(5 log_(4sqrt(2)) (3-sqrt(6)) - 6 log_8(sqrt(3)-sqrt(2)))

(4(sqrt(6) + sqrt(2)))/(sqrt(6) - sqrt(2)) - (2 + sqrt(3))/(2 - sqrt(3)) =

(3sqrt(2))/(sqrt(6)-sqrt(3))+(2sqrt(3))/(sqrt(6)+2)-(4sqrt(3))/(sqrt(6)-sqrt(2))

The length of the hypotenuse of an isosceles right angled triangle is 8sqrt2 cm . Find the length of the other two sides.

(6implify:)/(2sqrt(3)-sqrt(6))+(sqrt(6))/(sqrt(3)+sqrt(2))-(4sqrt(3))/(sqrt(6)-sqrt(2))