Home
Class 10
MATHS
If cosA+cos^2A=1 , then sin^2A+sin^4A= ...

If `cosA+cos^2A=1` , then `sin^2A+sin^4A=` (a)`-1` (b) `0` (c) `1` (d) None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos A+cos^(2)A=1, then sin^(2)A+sin^(4)A=-1(b)0(c)1(d) None of these

If cosA+cos^2A=1, find the value of sin^2A+sin^4A.

If cosA+cos^(2)A=1 , then prove that sin^(2)A+sin^(4)A=1 .

If cosA+cos^(2)A=1 , then prove that sin^(2)A+sin^(4)A=1 .

If sintheta+sin^2theta=1 , then cos^2theta+cos^4theta= (a) -1 (b) 1 (c) 0 (d) None of these

If sin theta+sin^(2)theta=1, then cos^(2)theta+cos^(4)theta=-1(b)1(c)0(d) None of these

If sinA+sin^2A=1, then the value of cos^2A+cos^4A is (a)2 (b) 1 (c) -2 (d) 0

The number of solutions to the equation sin^(-1)x +sin^(-1)(1-x)=cos^(-1)x is a)1 b)0 c)2 d)None of these

If cos theta + cos^2 theta = 1, then value of sin^2 theta + sin^4 theta is (a) -1 (c) 0 (c) 1 (d) 2

If A+B+C=0, then the value of sin^(2)A+cos C(cos A cos B-cos C)+cos B(cos A cos C-cos B) is equal to: -1 (b) 0(c)1 (d) none of these