Home
Class 12
MATHS
The value of lim(x->0) (tan[e^2]x^2-tan[...

The value of `lim_(x->0) (tan[e^2]x^2-tan[-e^2]x^2)/sin^2x`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr0)(tan[e^(2)]x^(2)-tan[-e^(2)]x^(2))/(sin^(2)x)

lim_(x rarr 0) (tan [e^(2)]x^(2)-tan[-e^(2)]x^(2))/(sin^(2)x) equals :

The value of lim_(x->0)(e^(x^2)-e^x+x)/(1-cos2x) is

Let f(x)=(tan[e^(2)]x^(2)-tan[-e^(2)]x^(2))/(sin^(2)x),x!=0 then the value of f(0) so that f is a continuous function is

The value of lim_(x rarr0)(sin^(-1)(2x)-tan^(-1)x)/(sin x) is equal to:

lim_(x->0)(tan8x)/(sin2x)

Evaluate lim_(x-> 0) (tan3x-2x)/(3x- sin^2 x)

the value of lim_(x rarr0)(x tan2x-2x tan x)/((1-cos2x)^(2)) is equal to

the value of lim_(x->0){(cosx)^(1/(sin^2x))+(sin2x+2tan^-13x+3x^2)/(ln(1+3x+sin^2x)+xe^x)}

lim_(x rarr0)(tan^(2)x-x^(2))/(x^(2)tan^(2)x)