Home
Class 12
MATHS
lim(x->0)(cos7x-cos9x)/(cosx-cos5x)...

`lim_(x->0)(cos7x-cos9x)/(cosx-cos5x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the limits: lim_(xrarr0)(cos7x-cos9x)/(cosx-cos5x)

lim_(x->0) (cos2x-cos4x)/(cos3x-cos5x) =

lim_(x rarr0)(cos7x-cos9x)/(cos x-cos5x)

Evaluate : lim_(xrarr0)(cos5x-cos7x)/(cosx-cos5x)

lim_(x to 0) (cos5x-cos7x)/(cosx-cos5x)

Lt_(x to 0) (cos7x-cos9x)/(cos3x-cos7x)=

lim_(x-gt0)(cos2x-cos3x)/(cos4x-1)

(lim)_(x->0)(cos2x-1)/(cosx-1)

lim_(x->0)(1-cos x-cos2x+cos x*cos2x)/(x^(4))

Lt_(x to 0) (cosx-cos4x)/(cos5x-cos7x)=