Home
Class 12
MATHS
Let A( vec a)a n dB( vec b) be points on...

Let `A( vec a)a n dB( vec b)` be points on two skew lines ` vec r= vec a+lambda vec pa n d vec r= vec b+u vec q` and the shortest distance between the skew lines is `1, w h e r e vec pa n d vec q` are unit vectors forming adjacent sides of a parallelogram enclosing an area of 1/2 units. If angle between`A B` and the line of shortest distance is `60^0,` then `A B=` a. `1/2` b. `2` c. `1` d. `lambda R={10}`

Promotional Banner

Similar Questions

Explore conceptually related problems

Write the equation of the plane containing the lines vec r= vec a+lambda vec b\ a n d\ vec r= vec a+mu vec c

Write the equation of the plane containing the lines vec r= vec a+lambda vec b\ a n d\ vec r= vec a+mu vec c

The shortest distance between the lines vec(r)=vec(a)+tvec(b) and vec(r)=vec(a)'+svec(b) is

Write the formula for the shortest distance between the lines vec r= vec a_1+lambda vec b_1 a n d\ vec r= vec a_2+mu vec b_2dot\

If vec a ,a n d vec b be two non-collinear unit vector such that vec axx( vec axx vec b)=1/2 vec b , then find the angle between vec a ,a n d vec bdot

Let vec a\ a n d\ vec b be two unit vectors and alpha be the angle between them, then vec a+ vec b is a unit vectors, if

prove that | vec axx vec b|=( vec adot vec b)t a ntheta, w h e r e theta is the angle between vec a a n d vec bdot

Let vec r be a unit vector satisfying vec rxx vec a= vec b ,w h e r e| vec a|=sqrt3a n d| vec b|=sqrt2. Then

If vec a\ a n d\ vec b are two vectors such that | vec axx vec b|=sqrt3\ a n d\ vec adot vec b=1, find the angle between vec a\ a n d\ vec b .

prove that | vec axx vec b|=( vec adot vec b)t a ntheta,\ w h e r e\ theta is the angle between vec a\ a n d\ vec bdot