Home
Class 11
MATHS
Let f(x) = x(-1)^([1//x]); x != 0 where ...

Let `f(x) = x(-1)^([1//x]); x != 0` where [.] denotes greatest integer function, then `lim_(x rarr 0) f (x)` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

lim_(x rarr0^(-))([x])/(x) (where [.] denotes greatest integer function) is

Let f(x)=["sinx"/x], x ne 0 , where [.] denotes the greatest integer function then lim_(xto0)f(x)

If f(x) = { sin[x]/([x]),[x] != 0 ; 0, [x] = 0} , Where[.] denotes the greatest integer function, then lim_(x rarr 0) f(x) is equal to

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

f(x)=1+[cos x]x, in 0<=x<=(x)/(2) (where [.] denotes greatest integer function)