Home
Class 12
MATHS
If A={4^(n)-3n-1:n in N) and B={9(n-1):n...

If `A={4^(n)-3n-1:n in N) and B={9(n-1):n in N}`
then

A

`B sub A`

B

`A cup B=N`

C

`A subB`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the set \( B \) is a subset of the set \( A \), we need to analyze the definitions of both sets. Given: - \( A = \{ 4^n - 3n - 1 : n \in \mathbb{N} \} \) - \( B = \{ 9(n - 1) : n \in \mathbb{N} \} \) ### Step 1: Analyze the elements of set \( B \) The elements of set \( B \) can be expressed as: \[ B = \{ 9(n - 1) : n \in \mathbb{N} \} \] This means for \( n = 1, 2, 3, \ldots \): - For \( n = 1 \): \( 9(1 - 1) = 0 \) - For \( n = 2 \): \( 9(2 - 1) = 9 \) - For \( n = 3 \): \( 9(3 - 1) = 18 \) - For \( n = 4 \): \( 9(4 - 1) = 27 \) - And so on... Thus, \( B = \{ 0, 9, 18, 27, \ldots \} \). ### Step 2: Analyze the elements of set \( A \) The elements of set \( A \) can be expressed as: \[ A = \{ 4^n - 3n - 1 : n \in \mathbb{N} \} \] We will calculate a few values of \( A \): - For \( n = 1 \): \( 4^1 - 3(1) - 1 = 4 - 3 - 1 = 0 \) - For \( n = 2 \): \( 4^2 - 3(2) - 1 = 16 - 6 - 1 = 9 \) - For \( n = 3 \): \( 4^3 - 3(3) - 1 = 64 - 9 - 1 = 54 \) - For \( n = 4 \): \( 4^4 - 3(4) - 1 = 256 - 12 - 1 = 243 \) Thus, the first few elements of \( A \) are \( \{ 0, 9, 54, 243, \ldots \} \). ### Step 3: Check if \( B \subseteq A \) Now we need to check if every element of \( B \) is also in \( A \): - The element \( 0 \) is in both \( A \) and \( B \). - The element \( 9 \) is also in both \( A \) and \( B \). - The next element of \( B \) is \( 18 \), which is not in \( A \) (as we found \( 54 \) for \( n=3 \)). - Continuing, \( 27 \) is also not in \( A \). Since \( 18 \) and \( 27 \) from \( B \) are not found in \( A \), we conclude that \( B \) is not a subset of \( A \). ### Conclusion Thus, we can conclude that: \[ B \nsubseteq A \]

To determine whether the set \( B \) is a subset of the set \( A \), we need to analyze the definitions of both sets. Given: - \( A = \{ 4^n - 3n - 1 : n \in \mathbb{N} \} \) - \( B = \{ 9(n - 1) : n \in \mathbb{N} \} \) ### Step 1: Analyze the elements of set \( B \) The elements of set \( B \) can be expressed as: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PRACTICE SET 03

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PAPER 2 (MATHEMATICS)|49 Videos
  • PRACTICE SET 05

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Paper 2 (Mathematics)|50 Videos

Similar Questions

Explore conceptually related problems

If X={4^(n)-3n-1n in N} and Y={9(n-1):n in N} , then X uu Y is equal to

If X={4^(n)-3n-1:n in N} and {9(n-1):n in N} , the prove that X sub Y .

Knowledge Check

  • if A= {5^(n)-4n-1: n in N} and B={16(n-1):n in N} then

    A
    A=B
    B
    `A cup B=phi`
    C
    `A subset B`
    D
    `B subset A`
  • If X={4^(n)-3n-1 : n in N} and Y={9(n-1) : n in N} , then

    A
    `X subY`
    B
    `X=Y`
    C
    `Y sub X`
    D
    none of these
  • If X= {4^n-3n-1:n in N} and {9(n-1):n in N, then precisely:

    A
    `XsubY`
    B
    `XsubeY`
    C
    X = Y
    D
    `XsupeY`
  • Similar Questions

    Explore conceptually related problems

    If X={4^(n)-3n-1:n in N} and Y={9(n-1):n in N} ,where N is the set of natural numbers,then X uu Y is equal to (1)N(2)Y-X(3)X(4)Y

    If X = {4 ^(n)-2n-1: n in N} and Y={9(n -1) : n in N}, then Xnn Y=

    If X={4^(n)-3n-1:ninN}and Y={9(n-1):ninN} , then XuuY is equal to

    If X={4^(n)-3n-1:ninN}andy={9(n-1):ninN} , then X uu Y equals

    If X ={(4^(n) -3n -1) | n in N] and Y= {9(n-1)| n in N} , then X cup Y equals to