Home
Class 12
MATHS
lim(alpha to beta)[(sin^(2)alpha-sin^(2)...

`lim_(alpha to beta)[(sin^(2)alpha-sin^(2)beta)/(alpha^(2)-beta^(2))]` is equal to

A

0

B

1

C

`(sinbeta)/(beta)`

D

`(sin2beta)/(2beta)`

Text Solution

Verified by Experts

The correct Answer is:
D

`underset(alphatobeta)(lim)(sin^(2)alpha-sin^(2)beta)/(2alpha-0)`
`=underset(alphatobeta)(lim)(sin2alpha)/(2alpha)=(sin2beta)/(2beta)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PRACTICE SET 08

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PAPER 2 OBJECTIVE TYPE|48 Videos
  • PRACTICE SET 10

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PAPER 2 (MATHEMATICS)|50 Videos

Similar Questions

Explore conceptually related problems

Let f(beta)=lim_(alpha rarr beta)(sin^(2)alpha-sin^(2)beta)/(alpha^(2)-beta^(2)) them f((pi)/(4)) greater then-

Evaluate the following limit : (lim)_(alpha->beta)[(sin^2alpha-sin^2beta)/(alpha^2-beta^2)]\ \

Knowledge Check

  • Suppose alpha, beta in R , and let E=sin^(2)(alpha+beta)+sin^(2)alpha+sin^(2)beta-2cos alpha cos beta cos (alpha+beta) then E is equal to :

    A
    0
    B
    1
    C
    2
    D
    `2cos alpha cos beta`
  • If alpha+beta-gamma=pi , then sin^(2)alpha=sin^(2)beta-sin^(2)gamma is equal to

    A
    `2sinalphasinbetacosgamma`
    B
    `2cosalphacosbetacosgamma`
    C
    `2sinalphasinbetasingamma`
    D
    None of these
  • If (cos x -cos alpha)/(cos x -cos beta)=(sin^(2)alpha cos beta)/(sin^(2)beta cos alpha) then cosx is equal to

    A
    `(cos alpha-cos beta)/(1+cos alpha cos beta)`
    B
    `(cos alpha-cos beta)/(1-cos alpha cos beta)`
    C
    `(cos alpha+cos beta)/(1+cos alpha cos beta)`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    If cos(alpha+beta)=0 then sin^(2)alpha+sin^(2)beta

    tan (alpha + beta) tan (alpha-beta) = (sin ^ (2) alpha-sin ^ (2) beta) / (cos ^ (2) alpha-sin ^ (2) beta)

    tan alpha and tan beta are roots of the equation x^(2)+ax+b=0, then the value of sin^(2)(alpha+beta)+a sin(alpha+beta)cos(alpha+beta)+b cos^(2)(alpha+beta) is equal to

    tan alpha and tan beta are roots of the equation x^(2)+ax+b=0, then the value of sin^(2)(alpha+beta)+a sin(alpha+beta)*cos(alpha+beta)+b cos^(2)(alpha+beta) is equal to

    If cot(alpha+beta)=0, then sin(alpha+2 beta) is equal to