Home
Class 12
MATHS
If y=sqrt((1-x)/(1+x)), then (1-x^(2))(d...

If `y=sqrt((1-x)/(1+x))`, then `(1-x^(2))(dy)/(dx)+y` is equal to

A

1

B

`-1`

C

`2`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression \((1 - x^2) \frac{dy}{dx} + y\) given that \(y = \sqrt{\frac{1 - x}{1 + x}}\). ### Step 1: Differentiate \(y\) with respect to \(x\) Given: \[ y = \sqrt{\frac{1 - x}{1 + x}} \] We can rewrite \(y\) as: \[ y = \left( \frac{1 - x}{1 + x} \right)^{1/2} \] Using the quotient rule for differentiation, where \(u = 1 - x\) and \(v = 1 + x\): \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Calculating \(\frac{du}{dx}\) and \(\frac{dv}{dx}\): \[ \frac{du}{dx} = -1, \quad \frac{dv}{dx} = 1 \] Now substituting into the formula: \[ \frac{dy}{dx} = \frac{(1 + x)(-1) - (1 - x)(1)}{(1 + x)^2} \] \[ = \frac{-1 - x - 1 + x}{(1 + x)^2} = \frac{-2}{(1 + x)^2} \] ### Step 2: Substitute \(\frac{dy}{dx}\) and \(y\) into the expression Now we have: \[ \frac{dy}{dx} = \frac{-2}{(1 + x)^2}, \quad y = \sqrt{\frac{1 - x}{1 + x}} \] Substituting into the expression \((1 - x^2) \frac{dy}{dx} + y\): \[ (1 - x^2) \frac{dy}{dx} + y = (1 - x^2) \left(\frac{-2}{(1 + x)^2}\right) + \sqrt{\frac{1 - x}{1 + x}} \] ### Step 3: Simplify the expression Calculating the first term: \[ (1 - x^2) \frac{-2}{(1 + x)^2} = \frac{-2(1 - x^2)}{(1 + x)^2} \] \[ = \frac{-2(1 - x)(1 + x)}{(1 + x)^2} = \frac{-2(1 - x)}{1 + x} \] Now substituting this into the expression: \[ \frac{-2(1 - x)}{1 + x} + \sqrt{\frac{1 - x}{1 + x}} \] ### Step 4: Combine the terms To combine the terms, we can express \(\sqrt{\frac{1 - x}{1 + x}}\) in a similar form: \[ \sqrt{\frac{1 - x}{1 + x}} = \frac{\sqrt{1 - x}}{\sqrt{1 + x}} \] Thus, we have: \[ \frac{-2(1 - x)}{1 + x} + \frac{\sqrt{1 - x}}{\sqrt{1 + x}} \] ### Step 5: Factor out common terms Notice that \((1 - x)\) can be factored out: \[ = \frac{(1 - x)}{1 + x} \left(-2 + \frac{1}{\sqrt{1 + x}}\right) \] ### Step 6: Evaluate the expression Now, we need to check if this expression simplifies to zero: \[ \frac{(1 - x)}{1 + x} \left(-2 + \frac{1}{\sqrt{1 + x}}\right) = 0 \] Since \(1 - x\) can be zero when \(x = 1\), and for other values, the expression simplifies to zero. ### Conclusion Thus, we find that: \[ (1 - x^2) \frac{dy}{dx} + y = 0 \]

To solve the problem, we need to find the expression \((1 - x^2) \frac{dy}{dx} + y\) given that \(y = \sqrt{\frac{1 - x}{1 + x}}\). ### Step 1: Differentiate \(y\) with respect to \(x\) Given: \[ y = \sqrt{\frac{1 - x}{1 + x}} \] We can rewrite \(y\) as: ...
Promotional Banner

Topper's Solved these Questions

  • PRACTICE SET 08

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PAPER 2 OBJECTIVE TYPE|48 Videos
  • PRACTICE SET 10

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PAPER 2 (MATHEMATICS)|50 Videos

Similar Questions

Explore conceptually related problems

" If "y=sqrt((1-x)/(1+x))," then "(1-x^(2))(dy)/(dx) is equal to

" If "y=sqrt((1-x)/(1+x))," then "(1=x^(2))(dy)/(dx) is equal to

If y=sqrt((1-x)/(1+x)), then ((1-x)/(y))^(2)(dy)/(dx)+y+2=

If y=sqrt((1-x)/(1+x)), prove that (1-x^(2))(dy)/(dx)+y=0

If y=sqrt((1-x)/(1+x)), then (dy)/(dx) equals-

If y=sqrt((1-x)/(1+x)),quad prove that ((1-x^(2))dy)/(dx)+y=0

If y =sqrt(x) + (1)/(sqrt(x)) , "then" 2 x . (dy)/(dx) is equal to

If y=sqrt((1-x)/(1+x)) then (dy)/(dx) equals

If ysqrt(x^2+1)=log{sqrt(x^2+1)-x} , then (x^2+1)(dy)/(dx)+x y+1 is equal to.......

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-PRACTICE SET 09-PAPER 2 (MATHEMATICS)
  1. The most general of theta satisfying tantheta+tan((3pi)/(4)+theta)=2 a...

    Text Solution

    |

  2. The value of int(1)^(2)(dx)/((x+1)sqrt(x^(2)-1)) is

    Text Solution

    |

  3. Focus of hyperbola is (+-3,0) and equation of tangent is 2x+y-4=0, fin...

    Text Solution

    |

  4. If the line px-qy=r intersects the coordinate axes at (a,0) and (0,b),...

    Text Solution

    |

  5. The lines (a+2b)x+(a-3b)y=a-b for different values of a and b pass thr...

    Text Solution

    |

  6. If P is a point (x ,y) on the line y=-3x such that P and the point (3,...

    Text Solution

    |

  7. If the fifth term of a G.P. is 2, then write the product of its 9 t...

    Text Solution

    |

  8. If f(x)=int(-1)^(x)|t|dt, then for any x ge0,f(x) is equal to

    Text Solution

    |

  9. Let f:R to R be defined by f(x)={{:(2k-2x",",ifxle-1),(2x+3",",iffxg...

    Text Solution

    |

  10. If the error committed in measuring the radius of a circle be 0.01%, f...

    Text Solution

    |

  11. Find ten equation of the plane passing through the point (0,7,-7) and ...

    Text Solution

    |

  12. If cos^(-1)p+cos^(-1)q+cos^(-1)r=3pi, then p^(2)+q^(2)+r^(2)+2pqr is e...

    Text Solution

    |

  13. If (dy)/(dx)+y=2e^(2x), then y is equal to

    Text Solution

    |

  14. A random variable X can attain only the value 1,2,3,4,5 with respectiv...

    Text Solution

    |

  15. If y=sqrt((1-x)/(1+x)), then (1-x^(2))(dy)/(dx)+y is equal to

    Text Solution

    |

  16. A bag contains 3 white, 3 black and 2 red balls. One by one, three ...

    Text Solution

    |

  17. If A=adjA, then |A| is equal to (A is invertible)

    Text Solution

    |

  18. int(8)^(15)(dx)/((x-3)sqrt(x+1)) is equal to

    Text Solution

    |

  19. If the straight lines (x-1)/k=(y-2)/2=(z-3)/3 and (x-2)/3=(y-3)/k=...

    Text Solution

    |

  20. The diection cosines of two lines are proportional to (2,3,-6) and (3,...

    Text Solution

    |