Home
Class 12
MATHS
If int(log"("x+sqrt(1+x^(2))")")/(sqrt(1...

If `int(log"("x+sqrt(1+x^(2))")")/(sqrt(1+x^(2)))dx="gof"(x)+"constant, then"`

A

`f(x)=log(x+sqrt(x^(2)+1))`

B

`f(x)=log(x+sqrt(x^(2)+1))" and "g(x)=x^(2)`

C

`f(x)=log(x+sqrt(x^(2)+1))" and "g(x)=(x^(2))/(2)`

D

`f(x)=(x^(2))/(2)" and "g(x)=log(x+sqrt(x^(2)+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \[ \int \frac{\log(x + \sqrt{1 + x^2})}{\sqrt{1 + x^2}} \, dx \] and express it in the form \( g(f(x)) + C \). ### Step 1: Substitution Let \[ t = \log(x + \sqrt{1 + x^2}) \] We will differentiate \( t \) with respect to \( x \). **Hint:** Use the chain rule for differentiation. ### Step 2: Differentiate \( t \) The derivative of \( t \) is given by: \[ \frac{dt}{dx} = \frac{1}{x + \sqrt{1 + x^2}} \cdot \left(1 + \frac{x}{\sqrt{1 + x^2}}\right) \] This simplifies to: \[ \frac{dt}{dx} = \frac{1 + \frac{x}{\sqrt{1 + x^2}}}{x + \sqrt{1 + x^2}} \] **Hint:** Simplify the expression by finding a common denominator. ### Step 3: Simplify the Derivative The expression simplifies to: \[ \frac{dt}{dx} = \frac{\sqrt{1 + x^2} + x}{x + \sqrt{1 + x^2}} \cdot \frac{1}{\sqrt{1 + x^2}} = \frac{1}{\sqrt{1 + x^2}} \] This means: \[ dx = \sqrt{1 + x^2} \, dt \] **Hint:** Substitute \( dx \) back into the integral. ### Step 4: Substitute in the Integral Now, substituting \( dx \) into the integral: \[ \int \frac{t}{\sqrt{1 + x^2}} \cdot \sqrt{1 + x^2} \, dt = \int t \, dt \] **Hint:** Recognize that this integral is straightforward. ### Step 5: Integrate Integrating \( t \): \[ \int t \, dt = \frac{t^2}{2} + C \] **Hint:** Remember to substitute back for \( t \). ### Step 6: Substitute Back Substituting \( t \) back into the equation gives: \[ \frac{1}{2} \left(\log(x + \sqrt{1 + x^2})\right)^2 + C \] **Hint:** Identify \( f(x) \) and \( g(x) \) from the expression. ### Step 7: Identify \( f(x) \) and \( g(x) \) From the integral result, we can identify: - \( f(x) = \log(x + \sqrt{1 + x^2}) \) - \( g(x) = \frac{x^2}{2} \) Thus, we have: \[ \int \frac{\log(x + \sqrt{1 + x^2})}{\sqrt{1 + x^2}} \, dx = g(f(x)) + C \] ### Final Answer The values of \( f(x) \) and \( g(x) \) are: - \( f(x) = \log(x + \sqrt{1 + x^2}) \) - \( g(x) = \frac{x^2}{2} \)

To solve the problem, we need to evaluate the integral \[ \int \frac{\log(x + \sqrt{1 + x^2})}{\sqrt{1 + x^2}} \, dx \] and express it in the form \( g(f(x)) + C \). ...
Promotional Banner

Topper's Solved these Questions

  • PRACTICE SET 13

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PAPER II OBJECTIVE TYPE|50 Videos
  • PRACTICE SET 15

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PAPER 2 (MATHEMATICS)|50 Videos

Similar Questions

Explore conceptually related problems

int x((ln(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx

int x(ln(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx equals

int ln(x+sqrt(1+x^(2)))dx

int log sqrt(x+1)dx=

int log(x+sqrt(x^(2)+a^(2)))dx

the value of int x*(ln(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx

Evaluate int(log_(e)(x+sqrt(x^(2)+1)))/(sqrt(x^(2)+1))dx.

int_(1)^(2)(1)/(x sqrt(log x))dx =

int_(1)^(e^(2))(ln x)/(sqrt(x))dx=

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-PRACTICE SET 14-Paper 2 (Mathematics)
  1. A five digit number is chosen at random. The probability that all the ...

    Text Solution

    |

  2. The output s as a Boolean expression in the inputs x(1),x(2) and x(3) ...

    Text Solution

    |

  3. If int(log"("x+sqrt(1+x^(2))")")/(sqrt(1+x^(2)))dx="gof"(x)+"constant,...

    Text Solution

    |

  4. If y=f(x)" and "ycosx+cosy=pi, then the value of f''(0) is

    Text Solution

    |

  5. The statement (p rArr q) iff (~p ^^ q) is a

    Text Solution

    |

  6. In order that the function f(x)=(x+1)^(cotx) is continuous at x = 0, f...

    Text Solution

    |

  7. If log(x)ax,log(x)bx" and "log(x)cx are in AP, where a, b, c and x, be...

    Text Solution

    |

  8. The angle between the straight lines x -y sqrt3=5 and sqrt3x +y =7 is

    Text Solution

    |

  9. If S is a set with 10 elements and A={(x,y):x,y in S, x ne y}, then th...

    Text Solution

    |

  10. Let r be relation from R (set of real numbers) to R defined by r={(a,b...

    Text Solution

    |

  11. Let f(x)=inte^x(x-1)(x-2)dxdot Then f decreases in the interval (-oo,...

    Text Solution

    |

  12. The number of critical points of f(x)=|x|(x-1)(x-2)(x-3) is

    Text Solution

    |

  13. The shaded region for the inequality x+5yle6 is

    Text Solution

    |

  14. For an LPP, minimise Z = 2x + y subject to constraint 5x+10y le 50 , x...

    Text Solution

    |

  15. Let [x] denotes the greatest integer less than or equal to x. If f(x) ...

    Text Solution

    |

  16. If f(0) = 0 and f(x) =(1)/((1-e^(-1//x))) " for " x ne 0. Then, only o...

    Text Solution

    |

  17. int(0)^(10)|x(x-1)(x-2)|dx is equal to

    Text Solution

    |

  18. Statement I int(pi/6)^(pi/3)1/(1+tan^3x) is pi/12 Statement II inta...

    Text Solution

    |

  19. Function f(x)={x-1, x<2 and 2x-3, xgeq2 is a continuous function

    Text Solution

    |

  20. Area of the region bounded by the curves y=2^(x),y=2x-x^(2),x=0" and "...

    Text Solution

    |