Home
Class 12
MATHS
If x^y=e^(x-y) , prove that (dy)/(dx)=(l...

If `x^y=e^(x-y)` , prove that `(dy)/(dx)=(logx)/((1+logx)^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(logx)/((1+logx)^(2))

If ylog x=(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2))

If x^y = e^(x-y) then prove that (dy)/(dx)=logx/(1+logx)^2 .

If x^y = e^(x-y) , prove that dy/dx = (logx)/({log(xe)}^2)

If x^y=e^(x-y), show that (dy)/(dx)=(logx)/({log(x e)}^2)

If x^y= y^x , prove that (dy)/(dx)=((y/x-logy))/((x/y-logx))

If y=x^(y^(x)) , prove that, (dy)/(dx)=(y log y(1+x logx log y))/(x logx(1-x logy)) .

If e^(x-y)=x^y then prove that dy/dx=logx/[logex]^2

If x^Y = e^[X - Y] , prove that dy/dx= log x/(1+logx)^2 .